Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
JACC Heart Fail ; 11(6): 691-698, 2023 06.
Article in English | MEDLINE | ID: covidwho-2308188

ABSTRACT

BACKGROUND: In patients with symptomatic heart failure (HF) and previous heart failure hospitalization (HFH), hemodynamic-guided HF management using a wireless pulmonary artery pressure (PAP) sensor reduces HFH, but it is unclear whether these benefits extend to patients who have not been recently hospitalized but remain at risk because of elevated natriuretic peptides (NPs). OBJECTIVES: This study assessed the efficacy and safety of hemodynamic-guided HF management in patients with elevated NPs but no recent HFH. METHODS: In the GUIDE-HF (Hemodynamic-Guided Management of Heart Failure) trial, 1,000 patients with New York Heart Association (NYHA) functional class II to IV HF and either previous HFH or elevated NP levels were randomly assigned to hemodynamic-guided HF management or usual care. The authors evaluated the primary study composite of all-cause mortality and total HF events at 12 months according to treatment assignment and enrollment stratum (HFH vs elevated NPs) by using Cox proportional hazards models. RESULTS: Of 999 evaluable patients, 557 were enrolled on the basis of a previous HFH and 442 on the basis of elevated NPs alone. Those patients enrolled by NP criteria were older and more commonly White persons with lower body mass index, lower NYHA class, less diabetes, more atrial fibrillation, and lower baseline PAP. Event rates were lower among those patients in the NP group for both the full follow-up (40.9 per 100 patient-years vs 82.0 per 100 patient-years) and the pre-COVID-19 analysis (43.6 per 100 patient-years vs 88.0 per 100 patient-years). The effects of hemodynamic monitoring were consistent across enrollment strata for the primary endpoint over the full study duration (interaction P = 0.71) and the pre-COVID-19 analysis (interaction P = 0.58). CONCLUSIONS: Consistent effects of hemodynamic-guided HF management across enrollment strata in GUIDE-HF support consideration of hemodynamic monitoring in the expanded group of patients with chronic HF and elevated NPs without recent HFH. (Hemodynamic-Guided Management of Heart Failure [GUIDE-HF]; NCT03387813).


Subject(s)
COVID-19 , Heart Failure , Humans , Hospitalization , Natriuretic Peptides , Hemodynamics
2.
Eur J Heart Fail ; 25(2): 139-151, 2023 02.
Article in English | MEDLINE | ID: covidwho-2279971

ABSTRACT

Heart failure (HF) is a complex syndrome that affects mortality/morbidity and acts at different levels in the patient's life, resulting in a drastic impairment in multiple aspects of daily activities (e.g. physical, mental/emotional, and social) and leading to a reduction in quality of life. The definition of disease status and symptom severity has been traditionally based on the physician assessment, while the patient's experience of disease has been long overlooked. The active participation of patients in their own care is necessary to better understand the perception of disease and the multiple aspects of life affected, and to improve adherence to treatments. Patient-reported outcomes (PROs) aim to switch traditional care to a more patient-centred approach. Although PROs demonstrated precision in the evaluation of disease status and have a good association with prognosis in several randomized controlled trials, their implementation into clinical practice is limited. This review discusses the modalities of use of PROs in HF, summarizes the most largely adopted PROs in HF care, and provides an overview on the application of PROs in trials and the potential for their transition to clinical practice. By discussing the advantages and the disadvantages of their use, the reasons limiting their application in daily clinical routine, and the strategies that may promote their implementation, this review aims to foster the systematic integration of the patient's standpoint in HF care.


Subject(s)
Heart Failure , Humans , Heart Failure/therapy , Quality of Life/psychology , Patient Reported Outcome Measures , Prognosis , Hospitalization
3.
JACC Heart Fail ; 10(12): 931-944, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2210691

ABSTRACT

BACKGROUND: Hemodynamically-guided management using an implanted pulmonary artery pressure sensor is indicated to reduce heart failure (HF) hospitalizations in patients with New York Heart Association (NYHA) functional class II-III with a prior HF hospitalization or those with elevated natriuretic peptides. OBJECTIVES: The authors sought to evaluate the effect of left ventricular ejection fraction (EF) on treatment outcomes in the GUIDE-HF (Hemodynamic-GUIDEd management of Heart Failure) randomized trial. METHODS: The GUIDE-HF randomized arm included 1,000 NYHA functional class II-IV patients (with HF hospitalization within the prior 12 months or elevated natriuretic peptides adjusted for EF and body mass index) implanted with a pulmonary artery pressure sensor, randomized 1:1 to a hemodynamically-guided management group (treatment) or a control group (control). The primary endpoint was the composite of HF hospitalizations, urgent HF visits, and all-cause mortality at 12 months. The authors assessed outcomes by EF in guideline-defined subgroups ≤40%, 41%-49%, and ≥50%, within the trial specified pre-COVID-19 period cohort. RESULTS: There were 177 primary events (0.553/patient-year) in the treatment group and 224 events (0.682/patient-year) in the control group (HR: 0.81 [95% CI: 0.66-1.00]; P = 0.049); HF hospitalization was lower in the treatment vs control group (HR: 0.72 [95% CI: 0.57-0.92]; P = 0.0072). Within each EF subgroup, primary endpoint and HF hospitalization rates were lower in the treatment group (HR <1.0 across the EF spectrum). Event rate reduction by EF in the treatment groups was correlated with reduction in pulmonary artery pressures and medication changes. CONCLUSIONS: Hemodynamically-guided HF management decreases HF-related endpoints across the EF spectrum in an expanded patient population of patients with HF. (Hemodynamic-GUIDEd Management of Heart Failure [GUIDE-HF]; NCT03387813).


Subject(s)
COVID-19 , Heart Failure , Humans , Stroke Volume , Ventricular Function, Left , Heart Failure/therapy , Body Mass Index
4.
Eur Heart J ; 43(27): 2603-2618, 2022 07 14.
Article in English | MEDLINE | ID: covidwho-1735557

ABSTRACT

AIMS: During the coronavirus disease 2019 (COVID-19) pandemic, important changes in heart failure (HF) event rates have been widely reported, but few data address potential causes for these changes; several possibilities were examined in the GUIDE-HF study. METHODS AND RESULTS: From 15 March 2018 to 20 December 2019, patients were randomized to haemodynamic-guided management (treatment) vs. control for 12 months, with a primary endpoint of all-cause mortality plus HF events. Pre-COVID-19, the primary endpoint rate was 0.553 vs. 0.682 events/patient-year in the treatment vs. control group [hazard ratio (HR) 0.81, P = 0.049]. Treatment difference was no longer evident during COVID-19 (HR 1.11, P = 0.526), with a 21% decrease in the control group (0.536 events/patient-year) and no change in the treatment group (0.597 events/patient-year). Data reflecting provider-, disease-, and patient-dependent factors that might change the primary endpoint rate during COVID-19 were examined. Subject contact frequency was similar in the treatment vs. control group before and during COVID-19. During COVID-19, the monthly rate of medication changes fell 19.2% in the treatment vs. 10.7% in the control group to levels not different between groups (P = 0.362). COVID-19 was infrequent and not different between groups. Pulmonary artery pressure area under the curve decreased -98 mmHg-days in the treatment group vs. -100 mmHg-days in the controls (P = 0.867). Patient compliance with the study protocol was maintained during COVID-19 in both groups. CONCLUSION: During COVID-19, the primary event rate decreased in the controls and remained low in the treatment group, resulting in an effacement of group differences that were present pre-COVID-19. These outcomes did not result from changes in provider- or disease-dependent factors; pulmonary artery pressure decreased despite fewer medication changes, suggesting that patient-dependent factors played an important role in these outcomes. Clinical Trials.gov: NCT03387813.


Subject(s)
COVID-19 , Heart Failure , Hemodynamics , Humans , Pandemics , Pulmonary Artery
5.
Eur Heart J ; 43(5): 367-376, 2022 Feb 03.
Article in English | MEDLINE | ID: covidwho-1591605

ABSTRACT

In the year 2021, the universal definition and classification of heart failure (HF) was published that defines HF as a clinical syndrome with symptoms and/or signs caused by a cardiac abnormality and corroborated by elevated natriuretic peptide levels or objective evidence of cardiogenic congestion. This definition and the classification of HF with reduced ejection fraction (HFrEF), mildly reduced, and HF with preserved ejection fraction (HFpEF) is consistent with the 2021 ESC Guidelines on HF. Among several other new recommendations, these guidelines give a Class I indication for the use of the sodium-glucose co-transporter 2 (SGLT2) inhibitors dapagliflozin and empagliflozin in HFrEF patients. As the first evidence-based treatment for HFpEF, in the EMPEROR-Preserved trial, empagliflozin reduced the composite endpoint of cardiovascular death and HF hospitalizations. Several reports in 2021 have provided novel and detailed analyses of device and medical therapy in HF, especially regarding sacubitril/valsartan, SGLT2 inhibitors, mineralocorticoid receptor antagonists, ferric carboxymaltose, soluble guanylate cyclase activators, and cardiac myosin activators. In patients hospitalized with COVID-19, acute HF and myocardial injury is quite frequent, whereas myocarditis and long-term damage to the heart are rather uncommon.


Subject(s)
COVID-19 , Cardiomyopathies , Heart Failure , Aminobutyrates , Angiotensin Receptor Antagonists , Biphenyl Compounds , Heart Failure/drug therapy , Humans , SARS-CoV-2 , Stroke Volume
6.
Crit Care Explor ; 3(10): e0539, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1455368

ABSTRACT

OBJECTIVES: Due to the rapid rate of severe acute respiratory syndrome coronavirus 2 transmission and the heterogeneity of symptoms of coronavirus disease 2019, expeditious and effective triage is critical for early treatment and effective allocation of hospital resources. DESIGN: A post hoc analysis of respiratory data from non-invasive venous waveform analysis among patients enrolled in an observational study was performed. SETTING: Vanderbilt University Medical Center. PATIENTS: Peripheral venous waveforms were recorded from admission to discharge in enrolled coronavirus disease 2019-positive patients and healthy age-matched controls. INTERVENTIONS: Data were analyzed in LabChart 8 to transform venous waveforms to the frequency domain using fast Fourier transforms. The peak respiratory frequency was normalized to the peak cardiac frequency to generate a respiratory non-invasive venous waveform analysis respiratory index. Paired Fisher exact tests were used to compare each patient's respiratory non-invasive venous waveform analysis respiratory index at admission and discharge. A nonparametric one-way analysis of variance was used for multiple comparisons between patients with coronavirus disease 2019 and healthy controls for respiratory non-invasive venous waveform analysis respiratory index. MEASUREMENTS AND MAIN RESULTS: Fifty coronavirus disease 2019-positive patients were enrolled between April 2020, and September 2020, and 45 were analyzed; 34 required supplemental oxygen and 11 did not. The respiratory non-invasive venous waveform analysis respiratory index was significantly higher for the 34 patients with coronavirus disease 2019 who received supplemental oxygen (median, 0.27; interquartile range, 0.11-1.28) compared with the 34 healthy controls (median, 0.06; interquartile range, 0.03-0.14) (p < 0.01). For patients with coronavirus disease 2019 who received supplemental oxygen, respiratory non-invasive venous waveform analysis respiratory index was significantly lower at hospital discharge (p = 0.02; 95% CI, 0.10-1.9) compared with hospital admission (median = 0.12; interquartile range, 0.05-0.56). For patients with coronavirus disease 2019, a respiratory non-invasive venous waveform analysis respiratory index of 0.64 demonstrated sensitivity of 92%, specificity of 47%, and positive predictive value of 93% for predicting requirement of supplemental oxygen during the hospitalization. CONCLUSIONS: Respiratory non-invasive venous waveform analysis respiratory index represents a novel physiologic respiratory measurement with a promising ability to triage early care and predict the need for oxygen support therapy in coronavirus disease 2019 patients.

7.
Lancet ; 398(10304): 991-1001, 2021 09 11.
Article in English | MEDLINE | ID: covidwho-1373313

ABSTRACT

BACKGROUND: Previous studies have suggested that haemodynamic-guided management using an implantable pulmonary artery pressure monitor reduces heart failure hospitalisations in patients with moderately symptomatic (New York Heart Association [NYHA] functional class III) chronic heart failure and a hospitalisation in the past year, irrespective of ejection fraction. It is unclear if these benefits extend to patients with mild (NYHA functional class II) or severe (NYHA functional class IV) symptoms of heart failure or to patients with elevated natriuretic peptides without a recent heart failure hospitalisation. This trial was designed to evaluate whether haemodynamic-guided management using remote pulmonary artery pressure monitoring could reduce heart failure events and mortality in patients with heart failure across the spectrum of symptom severity (NYHA funational class II-IV), including those with elevated natriuretic peptides but without a recent heart failure hospitalisation. METHODS: The randomised arm of the haemodynamic-GUIDEed management of Heart Failure (GUIDE-HF) trial was a multicentre, single-blind study at 118 centres in the USA and Canada. Following successful implantation of a pulmonary artery pressure monitor, patients with all ejection fractions, NYHA functional class II-IV chronic heart failure, and either a recent heart failure hospitalisation or elevated natriuretic peptides (based on a-priori thresholds) were randomly assigned (1:1) to either haemodynamic-guided heart failure management based on pulmonary artery pressure or a usual care control group. Patients were masked to their study group assignment. Investigators were aware of treatment assignment but did not have access to pulmonary artery pressure data for control patients. The primary endpoint was a composite of all-cause mortality and total heart failure events (heart failure hospitalisations and urgent heart failure hospital visits) at 12 months assessed in all randomly assigned patients. Safety was assessed in all patients. A pre-COVID-19 impact analysis for the primary and secondary outcomes was prespecified. This study is registered with ClinicalTrials.gov, NCT03387813. FINDINGS: Between March 15, 2018, and Dec 20, 2019, 1022 patients were enrolled, with 1000 patients implanted successfully, and follow-up was completed on Jan 8, 2021. There were 253 primary endpoint events (0·563 per patient-year) among 497 patients in the haemodynamic-guided management group (treatment group) and 289 (0·640 per patient-year) in 503 patients in the control group (hazard ratio [HR] 0·88, 95% CI 0·74-1·05; p=0·16). A prespecified COVID-19 sensitivity analysis using a time-dependent variable to compare events before COVID-19 and during the pandemic suggested a treatment interaction (pinteraction=0·11) due to a change in the primary endpoint event rate during the pandemic phase of the trial, warranting a pre-COVID-19 impact analysis. In the pre-COVID-19 impact analysis, there were 177 primary events (0·553 per patient-year) in the intervention group and 224 events (0·682 per patient-year) in the control group (HR 0·81, 95% CI 0·66-1·00; p=0·049). This difference in primary events almost disappeared during COVID-19, with a 21% decrease in the control group (0·536 per patient-year) relative to pre-COVID-19, virtually no change in the treatment group (0·597 per patient-year), and no difference between groups (HR 1·11, 95% CI 0·80-1·55; p=0·53). The cumulative incidence of heart failure events was not reduced by haemodynamic-guided management (0·85, 0·70-1·03; p=0·096) in the overall study analysis but was significantly decreased in the pre-COVID-19 impact analysis (0·76, 0·61-0·95; p=0·014). 1014 (99%) of 1022 patients had freedom from device or system-related complications. INTERPRETATION: Haemodynamic-guided management of heart failure did not result in a lower composite endpoint rate of mortality and total heart failure events compared with the control group in the overall study analysis. However, a pre-COVID-19 impact analysis indicated a possible benefit of haemodynamic-guided management on the primary outcome in the pre-COVID-19 period, primarily driven by a lower heart failure hospitalisation rate compared with the control group. FUNDING: Abbott.


Subject(s)
Electrodes, Implanted , Heart Failure , Hemodynamics , Hospitalization/statistics & numerical data , Pulmonary Artery , Aged , COVID-19 , Female , Heart Failure/classification , Heart Failure/physiopathology , Hemodynamics/physiology , Hospitalization/trends , Humans , Male , Mortality/trends , Remote Sensing Technology
8.
J Card Surg ; 36(9): 3217-3221, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1276724

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has significantly impacted the healthcare landscape in the United States in a variety of ways including a nation-wide reduction in operative volume. The impact of COVID-19 on the availability of donor organs and the impact on solid organ transplant remains unclear. We examine the impact of COVID-19 on a single, large-volume heart transplant program. METHODS: A retrospective chart review was performed examining all adult heart transplants performed at a single institution between March 2020 and June 2020. This was compared to the same time frame in 2019. We examined incidence of primary graft dysfunction, continuous renal replacement therapy (CRRT) and 30-day survival. RESULTS: From March to June 2020, 43 orthotopic heart transplants were performed compared to 31 performed during 2019. Donor and recipient demographics demonstrated no differences. There was no difference in 30-day survival. There was a statistically significant difference in incidence of postoperative CRRT (9/31 vs. 3/43; p = .01). There was a statistically significant difference in race (23 W/8B/1AA vs. 30 W/13B; p = .029). CONCLUSION: We demonstrate that a single, large-volume transplant program was able to grow volume with little difference in donor variables and clinical outcomes following transplant. While multiple reasons are possible, most likely the reduction of volume at other programs allowed us to utilize organs to which we would not have previously had access. More significantly, our growth in volume was coupled with no instances of COVID-19 infection or transmission amongst patients or staff due to an aggressive testing and surveillance program.


Subject(s)
COVID-19 , Heart Transplantation , Tissue and Organ Procurement , Adult , Humans , Pandemics , Retrospective Studies , SARS-CoV-2 , Tissue Donors , United States/epidemiology
9.
Am Heart J ; 235: 158-162, 2021 05.
Article in English | MEDLINE | ID: covidwho-1139418

ABSTRACT

The WiSE system is a novel, leadless endocardial system that can provide cardiac resynchronization therapy in patients who cannot be treated with a conventional epicardial left ventricular lead. Safety and efficacy were being evaluated in the pivotal, randomized, double-blind SOLVE-CRT Trial (Stimulation of the Left Ventricular Endocardium for Cardiac Resynchronization Therapy.) The trial was initiated in 2018; however, patient enrollment was significantly impacted by the COVID-19 pandemic necessitating a change in design. This article describes the revised trial and the scientific rationale for the specific changes in the protocol.


Subject(s)
COVID-19/epidemiology , Cardiac Resynchronization Therapy/methods , Endocardium , Heart Failure/therapy , Pandemics , Cardiac Resynchronization Therapy/adverse effects , Double-Blind Method , Humans , Prospective Studies , Sample Size , Time Factors , Treatment Outcome , Ventricular Function, Left
10.
J Am Coll Cardiol ; 76(20): 2368-2378, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-912306

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has profoundly changed clinical care and research, including the conduct of clinical trials, and the clinical research ecosystem will need to adapt to this transformed environment. The Heart Failure Academic Research Consortium is a partnership between the Heart Failure Collaboratory and the Academic Research Consortium, composed of academic investigators from the United States and Europe, patients, the U.S. Food and Drug Administration, the National Institutes of Health, and industry members. A series of meetings were convened to address the challenges caused by the COVID-19 pandemic, review options for maintaining or altering best practices, and establish key recommendations for the conduct and analysis of clinical trials for cardiovascular disease and heart failure. This paper summarizes the discussions and expert consensus recommendations.


Subject(s)
Clinical Trials as Topic , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , Endpoint Determination , Humans , Socioeconomic Factors , Statistics as Topic
11.
JACC Heart Fail ; 8(8): 681-691, 2020 08.
Article in English | MEDLINE | ID: covidwho-634577

ABSTRACT

The coronavirus-2019 (COVID-19) infection pandemic has affected the care of patients with heart failure (HF) who have contracted COVID-19 as well as those without COVID-19 who have been impacted by the restructuring of health care delivery. Patients with HF and other cardiovascular comorbidities are at risk for severe disease and complications of infection. Similarly, COVID-19 has been demonstrated to cause myocarditis and may be implicated in new-onset cardiomyopathy. During this pandemic, special considerations are needed for patients with advanced HF, including those supported by durable left ventricular assist devices (LVADs) and heart transplant recipients. The purpose of this review is to summarize emerging data regarding the development of HF secondary to COVID-19 infection in patients with advanced HF and the implications of the pandemic for care of uninfected patients with HF.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Heart Failure/therapy , Heart Failure/virology , Pneumonia, Viral/complications , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Heart Transplantation , Heart-Assist Devices , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , SARS-CoV-2
12.
Eur Heart J ; 41(22): 2109-2117, 2020 06 07.
Article in English | MEDLINE | ID: covidwho-526858

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has important implications for the safety of participants in clinical trials and the research staff caring for them and, consequently, for the trials themselves. Patients with heart failure may be at greater risk of infection with COVID-19 and the consequences might also be more serious, but they are also at risk of adverse outcomes if their clinical care is compromised. As physicians and clinical trialists, it is our responsibility to ensure safe and effective care is delivered to trial participants without affecting the integrity of the trial. The social contract with our patients demands no less. Many regulatory authorities from different world regions have issued guidance statements regarding the conduct of clinical trials during this COVID-19 crisis. However, international trials may benefit from expert guidance from a global panel of experts to supplement local advice and regulations, thereby enhancing the safety of participants and the integrity of the trial. Accordingly, the Heart Failure Association of the European Society of Cardiology on 21 and 22 March 2020 conducted web-based meetings with expert clinical trialists in Europe, North America, South America, Australia, and Asia. The main objectives of this Expert Position Paper are to highlight the challenges that this pandemic poses for the conduct of clinical trials in heart failure and to offer advice on how they might be overcome, with some practical examples. While this panel of experts are focused on heart failure clinical trials, these discussions and recommendations may apply to clinical trials in other therapeutic areas.


Subject(s)
Betacoronavirus , Clinical Trials as Topic/methods , Coronavirus Infections , Heart Failure , Pandemics , Pneumonia, Viral , Research Design/standards , COVID-19 , Clinical Trials as Topic/ethics , Clinical Trials as Topic/standards , Europe , Heart Failure/complications , Heart Failure/therapy , Humans , Informed Consent/ethics , Informed Consent/standards , Patient Safety , Patient Selection/ethics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL